Turbulent separated convection flow adjacent to backward-facing step—effects of step height

نویسنده

  • Y. T. Chen
چکیده

Simulations of turbulent convection flow adjacent to a two-dimensional backward-facing step are presented to explore the effects of step height on turbulent separated flow and heat transfer. Reynolds number and duct’s height downstream from the step are kept constant at Re0 = 28,000 and H = 0.19 m, respectively. Uniform and constant heat flux of qw = 270 W/m 2 is specified at the stepped wall downstream from the step, while other walls are treated as adiabatic. The selection of the values for these parameters is motivated by the fact that measurements are available for this geometry and they can be used to validate the flow and heat transfer simulation code. Two-equation low-Reynolds-number model is employed to achieve the turbulent Prandtl number. The primary and secondary recirculation regions increase in size as the step height increases. The bulk temperature increases more rapidly as the step height increases. Increasing the step height causes the magnitude of the maximum turbulent kinetic energy to increase. Near the step and below the step height, the turbulent kinetic energy becomes smaller as the step height increases. Inside the recirculation region, magnitude of the peak friction coefficient does not significantly change with the increase of step height. The friction coefficient becomes smaller in magnitude with the increase of the step height. The peak Stanton number becomes smaller as the step height increases. 2006 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three Dimensional Laminar Convection Flow of Radiating Gas over a Backward Facing Step in a Duct

In this study, three-dimensional simulations are presented for laminar forced convection flow of a radiating gas over a backward-facing step in rectangular duct. The fluid is treated as a gray, absorbing, emitting and scattering medium. The three-dimensional Cartesian coordinate system is used to solve the governing equations which are conservations of mass, momentum and energy. These equations...

متن کامل

Ivestigation of Entropy Generation in 3-D Laminar Forced Convection Flow over a Backward Facing Step with Bleeding

A numerical investigation of entropy generation in laminar forced convection of gas flow over a backward facing step in a horizontal duct under bleeding condition is presented. For calculation of entropy generation from the second law of thermodynamics in a forced convection flow, the velocity and temperature distributions are primary needed. For this purpose, the three-dimensional Cartesian co...

متن کامل

Prediction of Fluid Flow and Heat Transfer Characteristics Behind a Single Backward-Facing Step

Numerical solutions based on standard finite volume method are presented for the study of heat transfer and fluid dynamic characteristics in turbulent flows behind a single sided backward-facing step. The calculation of the differential equations is performed using SIMPLE algorithm. For the turbulent quantities standard K-model is used. Predicted mean velocity profiles and reattachment lengths ...

متن کامل

Three-dimensional convection flow adjacent to inclined backward-facing step

Simulations of three-dimensional laminar forced convection adjacent to inclined backward-facing step in rectangular duct are presented to examine effects of step inclination on flow and heat transfer distributions. The step height is maintained as constant while its inclination angle is changed from 15 to 90 . The inlet flow is hydrodynamically steady and fully developed with uniform temperatur...

متن کامل

LES/FMDF of premixed methane/air flow in a backward-facing step combustor

In the present study, a hybrid Eulerian-Lagrangian methodology is utilized for large eddy simulation (LES) of premixed fuel/air flow over a three-dimensional backward facing step (BFS). The fluid dynamic features are obtained by solving the Eulerian filtered compressible transport equations while the species are predicted by using the filtered mass density function method (FMDF).  Some scalar f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006